This is BCE\#23.

I recommend you print out this page and bring it to class. Click here to show a set of five BCE23 student responses randomly selected from all of the student responses thus far in a new window.

John, here are your responses to the BCE and the Expert's response.
Consider a titration where 0.250 M NaOH is added to 50.0 mL of $0.400 \mathrm{M} \mathrm{HC}_{\mathbf{2}} \mathrm{H}_{\mathbf{3}} \mathrm{O}_{\mathbf{2}}$.

1. How many moles of $\mathrm{HC}_{2} \mathbf{H}_{3} \mathrm{O}_{\mathbf{2}}$ are in the original 50.0 mL sample?
2. Calculate the volume required to reach the equivalence point when 0.250 M NaOH is added to 50.0 mL of $\mathbf{0 . 4 0 0 ~} \mathbf{M ~ H C}_{\mathbf{2}} \mathbf{H}_{\mathbf{3}} \mathrm{O}_{\mathbf{2}}$.
$80.0 \mathrm{~mL} \quad 65 \%$
At the equivalence point the moles of $\mathrm{HC}_{2} \mathbf{H}_{3} \mathrm{O}_{2}$ are equal to the moles of NaOH . In Q1 we calculated the moles of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ to be 0.0200 mol . So we must add 0.0200 moles of NaOH to reach the equivalence point. The volume is,
$0.0200 \mathrm{~mol} \mathrm{NaOH} *(1 \mathrm{~L} / 0.250 \mathrm{~mol})=0.0800 \mathrm{~L}(\mathbf{8 0 . 0} \mathrm{~mL})$
3. What volume of 0.250 M NaOH is required to react with exactly one half of the moles of $\mathbf{H C}_{2} \mathbf{H}_{3} \mathrm{O}_{\mathbf{2}}$?
40.0 mL
53%
$80.0 \mathrm{~mL} / 2=40.0 \mathrm{~mL}$
4. Calculate $\left[\mathrm{H}^{+}\right]$concentration when exactly half of the $\mathbf{H C}_{2} \mathbf{H}_{3} \mathrm{O}_{2}$ has been neutralized by the $\mathbf{N a O H}$.

$$
\left[\mathrm{H}^{+}\right]=1.8 \mathrm{e}-5 \mathrm{M} \quad 18 \%
$$

Reworded this question is asking you to calculate the $\left[\mathrm{H}^{+}\right]$when 40.0 mL of 0.250 M NaOH are added to 50.0 mL of $0.400 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. To solve this we must write the neutralization equation and set up the IF table.
$\mathrm{mol} \mathrm{HC} \mathbf{2}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=0.0500 \mathrm{~L} *(0.400 \mathrm{~mol} / 1 \mathrm{~L})=0.0200 \mathrm{~mol}$
$\mathrm{mol} \mathrm{NaOH}=0.0400 \mathrm{~L} *(0.250 \mathrm{~mol} / 1 \mathrm{~L})=0.0100 \mathrm{~mol}$

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$ +	$\mathrm{NaOH}(\mathrm{l})$	\rightleftarrows	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-(\mathrm{aq})+}$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	
II	$\mathbf{0 . 0 2 0 0 \mathrm { mol }}$	0.0100 mol		0	-
F	$\mathbf{0 . 0 1 0 0 \mathrm { mol }}$	0		0.0100 mol	-

After completing the IF table we look at the Final row to determine what type of system we have. Looking at the Final row we have 0.0100 mol of a weak acid and 0.0100 moles of its conjugate base. This is a common ion system. So now we must set up an ICE table to calculate the $\left[\mathrm{H}^{+}\right]$for this common ion system.

We need to calculate the $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$ and the $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]$first.
$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=0.0100 \mathrm{~mol} / 0.0900 \mathrm{~L}=0.111 \mathrm{M}$
$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]=0.0100 \mathrm{~mol} / 0.0900 \mathrm{~L}=0.111 \mathrm{M}$

	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$ +	\rightleftarrows	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-(\mathrm{aq})+}$	$\mathrm{H}^{+}(\mathrm{aq})$
I	0.111		0.111	~ 0
C	-x		+x	+x

E	$0.111-\mathrm{x}$		$0.111+\mathrm{x}$	+x

$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$
$1.75 \times 10^{-5}=[0.111+x][x] /[0.111-x]$
assume $0.111-\mathrm{x}=0.111$
$1.75 \times 10^{-5}=[0.111][x] /[0.111]$
$1.75 \times 10^{-5}=[\mathrm{x}]=\left[\mathrm{H}^{+}\right]$
5. What is interesting about the concentration of $\left[\mathrm{H}^{+}\right]$in Q 4 ?

The $\left[\mathrm{H}^{\wedge}+\right]$ at the half-equivalence point is the same as the magnitude of the equilibrium constant.

At the half equivalence point the $\left[\mathrm{H}^{+}\right]=K_{a}$ for the weak acid.....cool!
6. Is there anything about the questions that you feel you do not understand? List your concerns/questions.
nothing
7. If there is one question you would like to have answered in lecture, what would that question be?
nothing

